Firewall Issues

- Firewalls are inevitably encountered by any networked enterprise application that
has to operate beyond the sheltering confines of an Intranet

- Typically, firewalls block all network traffic, with the exception of those intended
for certain "well-known" ports

- Since the RMI transport layer opens dynamic socket connections between the
client and the server to facilitate communication, the traffic is typically blocked by
most firewall implementations

- But luckily, the RMI designers had anticipated this problem, and a solution is
provided by the RMI transport layer itself

- To get across firewalls, RMI makes use of HTTP tunneling by encapsulating the
RMI calls within an HTTP POST request

- The possible scenarios: the RMI client, the server, or both can be operating from
behind a firewall

Frozoy

mEVEL
HTTP-encapulated
BT Call Tﬂﬂ

= B

Firewall

- When the transport layer tries to establish a connection with the server, it is
blocked by the firewall. When this happens, the RMI transport layer

automatically retries by encapsulating the call data within an HTTP POST
request

- The HTTP POST header for the call is in the form

htt p:// host nane: port

If a client is behind a firewall, it is important that you also set the system
property htt p. proxyHost appropriately

- Since almost all firewalls recognize the HTTP protocol, the specified proxy
server should be able to forward the call directly to the port on which the remote

server is listening on the outside

- Once the HTTP-encapsulated data is received at the server, it is automatically
decoded and dispatched by the RMI transport layer

- The reply is then sent back to client as HTTP-encapsulated data

- The following diagram shows the scenario when both the RMI client and server
are behind firewalls, or when the client proxy server can forward data only to the
well-known HTTP port 80 at the server

Proxy A P

e WATA | S ErVEL
HTTF-encagmlated Call forararded by
EMICall 11 java-rmicgi)

Firewall Firewall

In this case, the RMI transport layer uses one additional level of indirection. This
IS because the client can no longer send the HTTP-encapsulated JRMP calls to
arbitrary ports as the server is also behind a firewall

Instead, the RMI transport layer places the call inside the HTTP packets and
sends those packets to port 80 of the server

- The HTTP POST header is now in the form

http://host nane: 80/ cgi - bi n/java-rm ?f orwar d=<port >

- This causes the execution of the CGI script, j ava-rm . cgi , which in turn
invokes a local JVM, unbundles the HTTP packet, and forwards the call to the
server process on the designated port

- Replies from the server are sent back as HTTP REPLY packets to the originating
client port where RMI again unbundles the information and sends it to the
appropriate RMI stub

- Of course, for this to work, the java-rm . cgi script, which is included within
the standard Java 2 platform distribution, must be preconfigured with the path of
the Java interpreter and located within the web server's cgi-bin directory

It is also equally important for the RMI server to specify the host's fully-qualified
domain name via a system property upon startup to avoid any DNS resolution
problems

java. rm . server. host nane=host . donai n. com

Rather than making use of CGI script for the call forwarding, it is more efficient
to use a servlet implementation of the same

RMI suffers a significant performance degradation imposed by HTTP tunnelling

- The RMI application will no longer be able to multiplex calls on a single
connection, since it would now follow a discrete request/response protocol

- Additionally, using the cgi script exposes a fairly large security loophole on your
server machine, as now, the script can redirect any incoming request to any
port, completely bypassing your firewalling mechanism

Using HTTP tunneling precludes RMI applications from using callbacks, which in
itself could be a major design constraint

java.rm .server. di sabl eH t p=true

Distributed Garbage Collection

- One of the joys of programming for the Java platform is not worrying about
memory allocation

- The JVM has an automatic garbage collector that will reclaim the memory from
any object that has been discarded by the running program

- One of the design objectives for RMI was seamless integration into the Java
programming language, which includes garbage collection

- Designing an efficient single-machine garbage collector is hard; designing a
distributed garbage collector is very hard

- The RMI system provides a reference counting distributed garbage collection
algorithm based on Modula-3's Network Objects

- This system works by having the server keep track of which clients have
requested access to remote objects running on the server

- When areference is made, the server marks the object as "dirty" and when a
client drops the reference, it is marked as being "clean"

- The interface to the DGC (distributed garbage collector) is hidden in the stubs
and skeletons layer

However, a remote object can implement the j ava. rm . server. Unr ef er enced

interface and get a notification via the unr ef er enced method when there are no
longer any clients holding a live reference

In addition to the reference counting mechanism, a live client reference has a
lease with a specified time

If a client does not refresh the connection to the remote object before the lease
term expires, the reference is considered to be dead and the remote object may
be garbage collected

- The lease time is controlled by the system property j ava. rni . dgc. | easeVal ue

. The value is in milliseconds and defaults to 10 minutes.

Because of these garbage collection semantics, a client must be prepared to
deal with remote objects that have "disappeared"

DGC Example

- There are two remote objects, Hel | o and Message(bj ect

- Their implementations are designed to print out information when they are
created, unreferenced, finalized and then deleted

- A remote object can implement the Unr ef er enced interface and its one method,
unr ef er enced

- This method is called by the DGC when it removes the last remote reference to
the object
Messageoj ect | npl and Hel | ol npl are designed to print a message when this
happens

Messagehj ect | npl and Hel | ol npl also implement the fi nal i ze method.
This is called when the local garbage collector is about to destroy an object and
reclaim its memory space

In this implementation, MessageOoj ect | npl and Hel | ol npl print a message to
the console

- We run RMIServer and two copies of RMIClient

- We will experiment with the setting of the Java heap size (use the -mx command
line argument) and with explicitly setting the DGC remote reference leaseValue.
To change this, use the following command line:

java -Dyava.rm .dgc. | easeVal ue=10000 RM Server

where the unit of time for leaseValue is in milliseconds

- The constant HOST _NAME must match the computer name

| nport java.rm.*;

public interface Hell o extends java.rm . Renote
{ String sayHell o() throws RenoteException;

Message(bj ect get Messagebj ect () throws RenoteExcepti on;
}

| nport java.rm.*,
| nport java.rm.server.*;

public class Hellolnpl extends Uni cast Renot e(hj ect

{

| npl enents Hell o, Unreferenced
public Hellolnpl () throws RenpteException

{ super();

}

public String sayHell o() throws RenoteException
{ return "Hell o!";

}

public MessageOhj ect get Message(bj ect ()
t hr ows Renot eExcepti on

{ return new MessageQbj ect | npl ();

}

[

to be continued.]

public void unreferenced()

{ Systemout.println("Hellolnpl: Unreferenced");
}

public void finalize() throws Throwabl e

{ super.finalize();

Systemout.printin("Hellolnpl: Finalize called");

}
} [/ class Hell ol npl

| nport java.io. Serializable;
| nport java.rm.server.?*,

public interface MessageCbj ect extends java.rm . Renote

{ I nt get Nunber FronObj ect () throws java.rm . Renot eExcepti on;
I nt get Nunber FronCl ass() throws java.rm . Renot eExcepti on;

}

public class MessageObj ectl npl extends Uni cast Renot eCbj ect
| npl ements Message(bj ect, Serializable, Unreferenced

{ static int nunber = O;
private int obj Nunber;

public MessageObjectlnpl () throws RenoteException
{ obj Nunber = nunber;
Systemout.println("Mssage(bj ect:
C ass Nunber is #" + nunber + " (bject Nunber
s #' + obj Nunber);
nunber ++;

}

public int getNunber FronObj ect ()
{ return obj Nunber;

}

public int getNunberFronCl ass()
{ return nunber;

}

[to be continued.]

public void finalize() throws Throwabl e
{ super.finalize();
Systemout.println("MessageObject: Finalize for
object #: " + obj Nunber);

}

public void unreferenced()

{ Systemout.println("MessageObject: Unreferenced for
object #: " + obj Nunber);

}

} /] class MessageObj ect ! npl

| nport java. net.*;
| nport java.io.*;

| nport java.rm.?*;
| nport java.rm.server.?*;
| nport java.rm .registry. Locat eRegi stry;

public class RM Server
{ private static final int PORT
private static final String HOST_NAME

10007;
n r.]ar.T.ell ;

private static RM Server rm;

public static void main (String[] args)
{ System set SecurityManager (new RM SecurityManager ()

try
{ rm = new RM Server();

}

[to be continued.|]

catch (java.rm . UnknownHost Excepti on uhe)

{ Systemout.println("The host conputer nane you
have specified, " + HOST_NAME + " does not
mat ch your real conputer nanme.");

}

catch (Renot eException re)

{ Systemout.println("Error starting service");
Systemout.println("" +re);

}

catch (Mal formedURLExcepti on mJRLe)

{ Systemout.printin("Internal error” + mJRLe);

}

catch (Not BoundExcepti on nbe)

{ System out. println("Not Bound");
Systemout.println("" + nbe);

}

o main

public RM Server() throws RenoteException,

{

Mal f or mredURLEXcepti on, Not BoundExcepti on
Locat eRegi stry. createRegi stry(PORT);
[to be continued..]

}

}

Systemout.println("Registry created on host conputer
+ HOST_NAME + " on port " + Integer.toString(
PORT));

Hello hello = new Hell ol npl () ;

Systemout.println("Renote Hell oService
| npl enment ati on obj ect created");

String urlString = "//" + HOST _NAME + ":" +
| nteger.toString(PORT) + "/" + "Hello";

Nam ng.rebind(urlString, hello);

Systemout. println("Bindings Finished, waiting for
client requests.");

[/ class RM Server

| nport java.util . Date;
| nport java. net. Mal f ormedURLExcepti on;

| nport java.rm.*;

public class RM i ent

{ private static final int PORT = 10007,
private static final String HOST_NAME = "nane";
private static RMdient rm;
public static void main (String[] args)

{ rm = new RMCient();
}
public RMdient()
{ try
{ Hello hello = (Hello)Nam ng. | ookup("//" +
HOST NAME + ":" + Integer.toString(PORT) +

"I" + "Hello");
[to be continued.]

}

Systemout.println("HelloService |ookup
successful ");

Systemout.println("Message from Server:
hel |l 0. sayHel l o());

Message(bj ect no;

for (int 1 =0; i< 1000; i++)

{ no = hell o. get Messagehj ect () ;
Systemout.println("MessageObject: d as
Nunmber is #" + np.get Nunber FronCl ass() +
' bj ect Nunber is #" +
no. get Nunber Fronm(Cbj ect ());
nmo = null;

Thr ead. sl eep(500);

}
}
catch (Exception e)
{ Systemout.println(e);
}

}

/[l class RM i ent

+

S

The RM Cl | ent Socket Fact ory interface

- An RM i ent Socket Fact ory instance is used by the RMI runtime in order to
obtain client sockets for RMI calls

- A remote object can be associated with an RM C i ent Socket Fact ory when it
IS created/exported via the constructors or export Gbj ect methods of

java.rm . server. Uni cast Renot e(bj ect and
java.rm .activation. Activat abl e

- An RM O | ent Socket Fact ory instance associated with a remote object will be

downloaded to clients when the remote object's reference is transmitted in an
RMI call

- This RM C i ent Socket Fact ory will be used to create connections to the
remote object for remote method calls

- An RM C i ent Socket Fact ory instance can also be associated with a remote

object registry so that clients can use custom socket communication with a
remote object registry

- An implementation of this interface should be serializable and should implement
(bj ect . equal s(j ava. | ang. Qnj ect) to return true when passed an instance

that represents the same (functionally equivalent) client socket factory, and false
otherwise

It should also implement Qbj ect. hashCode() consistently with its
(bj ect . equal s implementation

Method Summary

Socket createSocket(String host, int port)
Create a client socket connected to the specified host and port.

The RM Cl | ent Socket Fact ory interface

- An RM Ser ver Socket Fact ory instance associated with a remote object is used
to obtain the Ser ver Socket used to accept incoming calls from clients

- An RM Ser ver Socket Fact ory instance can also be associated with a remote

object registry so that clients can use custom socket communication with a
remote object registry

Method Summary

ServerSocket|createServerSocket(int port)

Create a server socket on the specified port (port O indicates an
anonymous port).

Using a Custom RMI Socket Factory

Implementation and use of a custom RMI socket factory e.g. when
o0 RMI clients and servers need to use sockets that encrypt or compress data
o the application requires different socket types for different remote objects

. Prior to the Java' 2 SDK, v1.2 release, it was possible to create and install a
custom java.rm . server. RM Socket Fact ory subclass used globally for all

connections created by the RMI transport

It was not possible, however, to associate a different RMI socket factory on a
per-object basis

. For example in JDK™ v1.1.x, an RMI socket factory could not produce SSL
sockets for one object and use the Java Remote Method Protocol (JRMP)
directly over TCP for a different object in the same virtual machine

- As of the Java 2 SDK, v1.2 release, an RMI application can use a custom RMI
socket factory on a per-object basis, download a client-side socket factory, and
continue to use the default rmiregistry

- The type of socket to use is an application-specific decision

For instance, if your server sends or receives sensitive data, you might want a
socket that encrypts the data

For this example, the custom RMI socket factory will create sockets that perform
simple XOR encryption

- This type of encryption will protect data from a casual snooper sniffing packets
on the wire, but is easily decoded by a knowledgeable cryptanalyst

- XOR sockets use special input and output stream implementations to handle
Xxor-ing the data written to or read from the socket

| nport java.io.*;

public class XorlnputStream extends Filterl nputStream
{ private final byte pattern;

public XorlnputStream(lnputStreamin, byte pattern)
{ super (in);

this.pattern = pattern;
}

public int read() throws | OException
{ int b = in.read();
if (b!=-1)
b = (b ™ pattern) & OxFF;
return b;

}

[to be conti nued.|]

public int read(byte b[], int off,
throws | CException

{ I nt nunBytes = in.read(b, off, len);
I T (nunBytes <= 0)
return nunBytes;
for(int i = 0; i < nunBytes; i++)

b[off + 1] = (byte)((b[off + 1] " pattern)
& OxFF);

return nunBytes;

I nt | en)

}

} /] class XorlnputStream

| nport java.io.*;

public class XorQutputStream extends FilterQutputStream
{ private final byte pattern;

publ i ¢ Xor Qut put St rean(Qut put Stream out, byte pattern)
{ super (out);

this.pattern = pattern;
}

public void wite(int b) throws | OException
{ out.wite((b * pattern) & OxFF);

}

| nport java.io.*;
| nport | ava. net.*;

public class Xor Server Socket extends Server Socket
{ private final byte pattern;

publ i ¢ Xor Server Socket (i nt port, byte pattern)
throws | OException

{ super (port);
this.pattern = pattern;

}
public Socket accept() throws | CException
{ Socket s = new Xor Socket (pattern);
| npl Accept (S);
return s;
}

| nport java.io.*;
| nport | ava. net.*;

public class Xor Socket extends Socket

{ private final byte pattern;
private InputStreamin = null;
private QutputStreamout = null;

publ i ¢ Xor Socket (byte pattern)
t hrows | CException

{ super () ;
this.pattern = pattern;
}

public Xor Socket (String host, int port, byte pattern)
t hrows | OExcepti on

{ super (host, port);
this.pattern = pattern;

}

[to be continued.]

public synchroni zed | nput Stream get | nput St reamn()
throws | CException
{ If (in == null)
i n = new Xorl nput St reanm(super. getl nput Strean(),
pattern);
return in;

}

publ i c synchroni zed CQut put St ream get Qut put St ream()
t hrows | CException

{ I f (out == null)
out = new Xor Qut put St rean{ super. get Qut put Streant),
pattern);

return out;

}

} /] class Xor Socket

| nport java.io.*;
| mport java. net.*;
| mport java.rm.server.*;

public class Xordient Socket Fact ory
| npl ements RM Cl i ent Socket Factory, Serializable
{ private final byte pattern;

public XordCient Socket Factory(byte pattern)
{ this.pattern = pattern;

}

public Socket createSocket(String host, int port)
t hrows | CExcepti on

{ return new Xor Socket (host, port, pattern);

}

[

to be continued.]

public int hashCode()
{ return (int) pattern;

}

publ i ¢ bool ean equal s(Obj ect obj)
{ return (getC ass() == obj.getd ass() &&
pattern == ((Xord i ent Socket Fact ory)
obj). pattern);
}
} //class XordientSocket Fact ory

| nport java.io.*;
| mport java. net.*;
| mport java.rm.server.*;

public class Xor Server Socket Fact ory

{

| npl enments RM Server Socket Fact ory
private byte pattern;

publ i ¢ Xor Server Socket Factory(byte pattern)
{ this.pattern = pattern;

}

publ i c Server Socket createServer Socket (int port)
t hrows | OExcepti on
{ return new Xor Server Socket (port, pattern);

}
public int hashCode() {[Sane as client]}

publ i ¢ bool ean equal s(Ooject obj) {[Sane as client]}

public interface Hell o extends java.rm . Renote
{ String sayHell o() throws java.rm . Renot eExcepti on;

}

| nport java.io.*;

| nport java.rm.*;

| nport java.rm.server.?*;

| nport java.rm.registry.*;

public class Hellolnpl inplenents Hello
{ public Hellolnml () {}

public String sayHel |l o()
{ return "Hello World!";

}

public static void main(String args[])
{ Syst em set Secur i t yManager (new Securi tyManager());
[to be continued.]

byte pattern = (byte) OxAC
try
{ Hel | ol npl obj = new Hel |l ol npl () ;
RM C i ent Socket Factory csf =
new Xor Cl | ent Socket Factory(pattern);
RM Ser ver Socket Factory ssf =
new Xor Server Socket Fact ory(pattern);
Hell o stub = (Hell o) Uni cast Renot eCbj ect.
export Qobj ect (obj, 0, csf, ssf);
Locat eRegi stry. creat eRegi stry(2002);
Regi stry registry = LocateRegistry.
get Regi stry(2002);
regi stry.rebind("Hello", stub);
Systemout.println("Hellolnpl bound in registry");

}
catch (Exception e)

{ Systemout. println("Hellolnpl exception: " +
e. get Message());
e.printStackTrace();

}
}
} /lclass Hellol npl

| nport java.rm.?*;
| mport java.rm.registry.*;

public class Hellod i ent
{ public static void main(String args|[])
{ System set Securit yManager (new SecurityManager());
try
{ Registry registry =
Locat eRegi stry. get Regi stry(2002);
Hello obj = (Hello) registry. | ookup("Hello");
String nmessage = obj.sayHello();
Systemout. println(nmessage);

}
catch (Exception e)
{ Systemout.println("Hell ol ient exception: " +
e. get Message()) ;
e.printStackTrace();
}

