
Distributed Objects 1

Activation
of remote objects

The Activatable class
• Prior to the release of Java 2 SDK, an instance of a 
UnicastRemoteObject could be accessed from a server 
program that
• created an instance of the remote object
• ran all the time

• With the introduction of the class 
java.rmi.activation.Activatable and the RMI
daemon, rmid, programs can be written to register
information about remote object implementations that should
be created and execute "on demand“, rather than running all
the time

• The RMI daemon, rmid, provides a Java virtual machine
from which other JVM instances may be spawned



Distributed Objects 2

The Remote Interface
import java.rmi.*;

public interface MyRemoteInterface extends Remote {
public Object callMeRemotely() throws RemoteException;

}

The Client 
import java.rmi.*;

public class Client {
public static void main(String args[]) {

String server = "localhost";
System.setSecurityManager(new RMISecurityManager());
try {

String location = "rmi://" + server + 
"/ActivatableImplementation";

MyRemoteInterface mri = 
(MyRemoteInterface)Naming.lookup(location);

String result = "failure";
System.out.println("Making remote call to 

the server");
result = (String)mri.callMeRemotely();
System.out.println("Returned from 

remote call");
System.out.println("Result: " + result);

} catch (Exception e) {e.printStackTrace();}
}

} 



Distributed Objects 3

The Remote Interface Implementation

• There are four steps to create an implementation class
• Make the appropriate imports in the implementation class
• Extend your class from
java.rmi.activation.Activatable

• Declare a two-argument constructor in the implementation
class

• Implement the remote interface methods

The Remote Interface Implementation
import java.rmi.*;
import java.rmi.activation.*;

public class ActivatableImplementation extends Activatable 
implements MyRemoteInterface {

public ActivatableImplementation(ActivationID id, 
MarshalledObject data) throws RemoteException {

super(id, 0);
}

public Object callMeRemotely() throws RemoteException {
return "Success";

}
}



Distributed Objects 4

The “Setup” Class

• The job of the "setup" class is to create all the information
necessary for the activatable class, without necessarily
creating an instance of the remote object

• The setup class passes the information about the
activatable class to rmid, registers a remote reference (an 
instance of the activatable class's stub class) and an
identifier (name) with the rmiregistry, and then the setup
class may exit

The “Setup” Class /2

• There are seven steps to create a setup class: 
• Make the appropriate imports
• Install a security manager
• Create an ActivationGroup instance
• Create an ActivationDesc instance
• Declare an instance of your remote interface and 

register with rmid
• Bind the stub to a name in the rmiregistry
• Quit the setup application



Distributed Objects 5

The “Setup” Class /3

• In this example, for simplicity, we use a policy file that
gives global permission to anyone from anywhere
• Do not use this policy file in a production environment

• In the setup application, the job of the activation group 
descriptor is to provide all the information that rmid will
require to contact the appropriate existing JVM or spawn a 
new JVM for the activatable object 

The “Setup” Class /4
import java.rmi.*;
import java.rmi.activation.*;
import java.util.Properties;

public class Setup {
public static void main(String[] args) throws Exception {

System.setSecurityManager(new RMISecurityManager());

Properties props = new Properties(); 
props.put("java.security.policy",

"/home/rmi/activation/policy");
ActivationGroupDesc.CommandEnvironment ace = null; 
ActivationGroupDesc exampleGroup = new

ActivationGroupDesc(props, ace);

ActivationGroupID agi =
ActivationGroup.getSystem().
registerGroup(exampleGroup);

[to be continued…]



Distributed Objects 6

The “Setup” Class /5
String location = "file:/home/rmi/activation/";
MarshalledObject data = null;
ActivationDesc desc = new ActivationDesc(agi, 

"ActivatableImplementation", location, data);
MyRemoteInterface mri =

(MyRemoteInterface)Activatable.register(desc);
System.out.println("Got the stub for the

ActivatableImplementation");
Naming.rebind("ActivatableImplementation", mri);
System.out.println("Exported

ActivatableImplementation");
System.exit(0);

} //main
} //clas Setup

Compiling and Running the Code

• There are six steps to compile and run the code: 
• Compile the remote interface, implementation, client, and 

setup classes
• Run rmic on the implementation class
• Start the rmiregistry
• Start the activation daemon, rmid

• for Sun’s implementation
rmid -J-Dsun.rmi.activation.execPolicy=none

• Run the setup program
• Run the client



Distributed Objects 7

More Information about RMI /1

• Other activation features
• Activation of an object that does not extend
java.rmi.activation.Activatable

• Activation of a UnicastRemoteObject

http://java.sun.com/j2se/1.4.2/docs/
guide/rmi/activation

More Information about RMI /2
• Java security

http://java.sun.com/products/jdk/1.2/doc
/guide/security

• Use of RMI with SSL
• Custom socket factories for RMI-based communication
• An applicationcan export a remote object to use an RMI

socket factory that creates SSL sockets, so it can use SSL
socket communication instead of the default socket 
communication

• Java 2 SDK, v1.4 includes the Java Secure Socket
Extension (JSSE) API which provides an implementation
of SSL sockets

http://java.sun.com/products/jsse/



Distributed Objects 8

More Information about RMI /3

• The java.sun.com Web site
• William Grosso, Java RMI, O’Reilly, 2001


