The Common
Object Request Broker
Architecture
(CORBA)

CORBA

@® CORBA is a standard architecture for
distributed objects systems

@ CORBA is designed to allow distributed
objects to interoperate in a
heterogenous environment, where
objects can be implemented in different
programming languages and/or
deployed on different platforms

CORBA vs. Java RMI

® RMI is a proprietary facility and supports
objects written in the Java programming
langugage only

@ CORBA is an architecture that was
developed by the Object Management
Group (OMG), an industrial consortium

CORBA

® CORBA is a very rich set of protocols

@ A distributed object facility which adhere
to these protocols is said to be CORBA-
compliant

@ the distributed objects the facility
supports can interoperate with objects
supported by other CORBA-compliant
facilities

The basic architecture

naming
lookup >
9 ! implemerf\ation
stup skeletpn
ORB >0RB
netwoy k netwar k
operav’ng operatjng
system sv?em

"""""" 3> |ogical dataflow
> physical data flow

CORBA object interface

@ A distributed object is defined using an interface
similar to the remote interface file in Java RMI

@ Universal language with a distinct syntax, known
as the CORBA Interface Definition Language
(IDL)

@® For many languages there is a standardized
mapping from CORBA IDL

Cross-language CORBA
application

object implementation written
in C++

A

object client written in Java

skeleton in C+f+ generated by
compilingthe CORBA object
interfgce

stub in Java genefjated by compiling
the CORBA opject interface

ORB writ, in Java ORB written in C++

Inter-ORB protocols

@ To allow ORBs to be interoperable, the
OMG specified a protocol known as the
General Inter-ORB Protocol (GIOP), a
specification which “provides a general
framework for protocols to be built on
top of specific transport layers”

@ Inter-ORB Protocol (IIOP) = GIOP
applied to the TCP/IP transport layer

Inter-ORB protocols

The IIOP specification includes the following
elements:
& Transport management requirements
e connection and disconnection requirements

e roles for object client and object server in making and
unmaking connections

Definition of common data representation

e a coding scheme for marshalling and unmarshalling data of
each IDL data type

Message formats

Object bus

An ORB which adheres to the specifications of the
[IOP may interoperate with any other IIOP-compliant
ORBs over the Internet

“Object bus”, where the Internet is seen as a bus
thatinterconnects CORBA objects

CORBA object
references

® A CORBA object reference is an abstract
entity mapped to a language-specific object
reference by an ORB, in a representation
chosen by the developer of the ORB

@ For interoperability, OMG specifies a protocol
for the abstract CORBA object reference
object, known as the Interoperable Object
Reference (IOR) protocol

Interoperable Object
Reference (IOR)

An IOR is a string that contains encoding for
the following information:

e The type of the object

e The host where the object can be found

e The port number of the server for that object

e An object key, a string of bytes identifying the
object, used by an object server to locate the
object

CORBA Naming Service

® CORBA specifies a generic directory
service. The Naming Service serves
as a directory for CORBA objects

@ The Naming Service allows names to
be associated with object references

CORBA Naming Service

® To export a distributed object, a CORBA
object server contacts a Naming Service to
bind a symbolic name to the object

@ The Naming Service maintains a database of
names and the objects associated with them.

® The Naming Service resolves an object name
returning a reference to the object

® The API for the Naming Service is specified in
interfaces defined in IDL

CORBA Naming Service

The CORBA object naming scheme is necessarily
complex

Since the name space is universal, a standard
naming hierarchy is defined

naming context,

| naming context, .- | naming context2 |

| namingcontext; | naming context,

object obj ect
name; name,

CORBA Naming Service

@ The full name of an object, including all
the associated naming contexts, is
known as a compound name

<nam ng context > ..<nam ng context><object nanme>

® Naming contexts and name bindings
are created using methods provided in
the Naming Service interface

Interoperable Naming
Service

@® The Interoperable Naming Service (INS) is
a URL-based naming system based on the
CORBA Naming Service

@ |t allows applications to share a common

initial naming context and provide a URL to
access a CORBA object

CORBA Object Services

CORBA specifies services commonly needed in
distributed applications

Naming Service
Concurrency Service
Event Service
Logging Service
Scheduling Service
Security Service

Trading Service: for locating a service by the type
(instead of by name)

e Time Service: a service for time-related events
e Notification Service
e Object Transaction Service

Object Adapters

distributed object
implementation

object adapter

ORB

Object Adapter

@ An object adapter assists an ORB in
delivering a client request to an object
implementation

@ When an ORB receives a client’s request, it
locates the object adapter associated with the
object and forwards the request to the
adapter

@ The adapter interacts with the object
implementation’ s skeleton, which performs
data marshalling and invokes the appropriate
method in the object

The Portable Object
Adapter

@ There are different types of CORBA
object adapters.

@ The Portable Object Adapter, or POA,
IS a particular type of object adapter that
Is defined by the CORBA specification

@ An object adapter that is a POA allows
an object implementation to function
with different ORBs

The Java IDL

Java IDL - Java’s
CORBA facility

@ IDL is part of the Java 2 Platform

@ The Java IDL facility includes a CORBA
Object Request Broker (ORB), an IDL-to-Java
compiler, and a subset of CORBA standard

services

@® Java also provides a number of CORBA-
compliant facilities, including RMI over IIOP,
which allows a CORBA application to be
written using the RMI syntax and semantics

Key Java IDL packages

® org.omg.CORBA — contains interfaces
and classes providing the mapping of
the OMG CORBA APIs to the Java
programming language

® org.omg.CosNaming - contains
interfaces and classes providing the
naming service for Java IDL

Java IDL tools

Java IDL provides a set of tools needed

for developing a CORBA application:

e idlj - the IDL-to-Java compiler

e orbd - a server process which provides
Naming Service and other services

e servertool — provides a command-line
interface for application programmers to
register/unregister an object, and
startup/shutdown a server

The CORBA interface

nodul e Hel | oApp
{ interface Hello
{ string sayHello();
oneway voi d shutdown();

s

Compiling the IDL file

@® The IDL is compiled as follows:
idlj -fall Hello.idl
@® The —fall command option is necessary for the
compiler to generate all the files needed
@ If the compilation is successful, the following files
can be found in a Hel | oApp subdirectory:

Hel | oOperations. java Hel | 0. j ava
Hel | oHel per.j ava Hel | oHol der . j ava
_Hel I oSt ub. j ava Hel | oPOA. j ava

HelloOperations.java

@ The file HelloOperations.java is the
Java operations interface

@It is a Java interface file that is
equivalent to the CORBA IDL interface
file (Hello.idl)

@ You should look at this file to make sure
that the method signatures correspond
to what you expect

Hello.java

@® The signature interface file combines the
characteristics of the Java operations
interface (HelloOperations.java) with the
characteristics of the CORBA classes that
it extends (org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLENtity)

HelloHelper.java

@ The Java class Hel | oHel per provides
auxiliary functionality needed to support a
CORBA object in the context of the Java
language

@ In particular, a method, nar r ow, allows a
CORBA object reference to be cast to its
corresponding type in Java, so that a CORBA
object may be operated on using syntax for
Java object

_HelloStub.java

® The Java class HelloStub is the stub
file, which interfaces with the client
object

@ |t extends
or g. ong. CORBA. port abl e. Gbj ect | npl
and implements the Hello.java interface

HelloPOA.java, the server
skeleton

® The Java class HellolImpIPOA is the

skeleton combined with the portable
object adapter

Server-side classes

#® On the server side, two classes need
to be provided

e The servant, Hellolmpl, is the
implementation of the Hello IDL interface

e The object server, HelloServer

The servant

i mport org.ong. CosNam ng. *;
i mport org. ong. CORBA. ORB

cl ass Hell ol npl extends Hel | oPOA
{ private ORB orb;

public void set ORB(ORB _orh)
{ orb = _orb; }

public String sayHell o()
{ return "Hello world !'! "; }

public void shutdown()
{ orb. shutdown(fal se); }

}

The server /1

i mport org.ong. CosNam ng. *;
i mport org.ong. CORBA. ORB;
i mport org.ong. Portabl eServer. *;

public class HelloServer
{ public static void main(String args[])
{ try
{ ORB orb = ORB.init(args, null);
POA rootpoa = (POA)orb.resolve_initial _
ref erences(" Root POA") ;

r oot poa. t he_POAManager (). acti vate();
Hel I ol npl hell ol mpl = new Hel | ol mpl () ;
hel | ol mpl . set ORB(or b) ;

org. ong. CORBA. Obj ect ref = rootpoa.servant _

to_reference(hell ol mpl);
Hel l o href = Hell oHel per.narrow(ref);
[-]

The server /2

or g. ong. CORBA. Cbj ect obj Ref =
orb.resolve_initial _references("NaneService");
Nam ngCont ext Ext ncRef =
Nam ngCont ext Ext Hel per. narr ow(obj Ref) ;
String nane = "Hello";
NameConmponent path[] = ncRef.to_nane(nane);
ncRef . rebi nd(path, href);
Systemout.println("HelloServer ready
and waiting ...");
orb.run();
}
cat ch(Exception e)
{ Systemout.println(e);
}
} /1 main
} I/ class

The object client /1

@® The client code is responsible for:
e creating and initializing the ORB

e looking up the object using the Interoperable
Naming Service

e invoking the narrow method of the Helper object
to cast the object reference to a reference to a
Hello object implementation

e invoking remote methods using the reference

® The object’s sayHello method is invoked to
receive a string, and the object' s shutdown
method is invoked to deactivate the service

The object client /2

i mport org.ong. CosNam ng. *;
i mport org.ong. CORBA. ORB;

public class HelloCient
{ static Hello hellolnpl;
public static void main(String args[])
{ try
{ ORB orb = ORB.init(args, null);
or g. ong. CORBA. Obj ect obj Ref =
orb.resolve_initial _references(
"NaneService");
Nam ngCont ext Ext ncRef =
Nam ngCont ext Ext Hel per. narr ow(
obj Ref);
hel | ol mpl = Hel | oHel per. narr ow
ncRef.resolve_str("Hello"));

[-]

The object client /3

System out . printl n(
hel | ol mpl . sayHel l o());
hel | ol mpl . shut down() ;
}
catch(Exception e)
{ Systemout.println(e);

}

Starting the Java ORB
on the server

The Java ORB daemon orbd includes a
Naming Service

orbd -ORBInitial Port 1050
-ORBI ni ti al Host ser ver nachi nenane

Running the application

@ On the server
java Hel | oServer
—ORBI ni ti al Host nanmeser ver host
-ORBI nitial Port 1050
@ On the client
java Hel |l od i ent
-ORBI ni ti al Host naneserver host
-ORBlnitial Port 1050
@ N.B.: nameserverhost is the host on which
the IDL name server is running

