Introduction Chapter 1

Goals of Distributed Systems Connecting users and resources. Transparency. Openness. Scalability.

Transparency in a Distributed System

Transparency	Description
Access	Hide differences in data representation and how a resource is accessed
Location	Hide where a resource is located
Migration	Hide that a resource may move to another location
Relocation	Hide that a resource may be moved to another location while in use
Replication	Hide that a resource may be shared by several competitive users
Concurrency	Hide that a resource may be shared by several competitive users
Failure	Hide the failure and recovery of a resource (see next slide)
Persistence	Hide whether a (software) resource is in memory or on disk

Different forms of transparency in a distributed system.

Distributed System

Lamport definition:

"you know you have one when the crash of a computer you have never heard of stops you from getting any work done."

Scalability Problems

Concept	Example		
Centralized services	A single server for all users		
Centralized data	A single on-line telephone book		
Centralized algorithms	Doing routing based on complete information		

Examples of scalability limitations.

Decentralized algorithms

•No machine has complete information about the system state.

- •Machines make decisions based only on local information.
- •Failure of one machine does not ruin the algorithm.
- •There is no implicit assumption that a global clock exists.

The larger the system, the larger the uncertainty.

Scaling Techniques (1) Client Serve FIRST NAME MAARTEN Check form Process form (a) Client Server FIRST NAME MAARTEN LAST NAME VAN STEEN E-MAIL STEEN@C MAARTEN VAN STEEN STEEN@CS.VU.NL Check form Process form (b) The difference between letting: a server or a) b) a client check forms as they are being filled

Software Concepts

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

An overview between

- DOS (Distributed Operating Systems)
- NOS (Network Operating Systems)
- Middleware

Multicomputer Operating Systems (3)

Synchronization point	Send buffer	Reliable comm. guaranteed?	
Block sender until buffer not full	Yes	Not necessary	
Block sender until message sent	No	Not necessary	
Block sender until message received	No	Necessary	
Block sender until message delivered	No	Necessary	

Relation between blocking, buffering, and reliable communications.

_	Distributed OS		Network	Middleware-
Item	Multiproc.	Multicomp.	OS	based OS
Degree of transparency	Very High	High	Low	High
Same OS on all nodes	Yes	Yes	No	No
Number of copies of OS	1	N	N	N
Basis for communication	Shared memory	Messages	Files	Model specific
Resource management	Global, central	Global, distributed	Per node	Per node
Scalability	No	Moderately	Yes	Varies
Openness	Closed	Closed	Open	Open

origon hotwoon Systems

A comparison between multiprocessor operating systems, multicomputer operating systems, network operating systems, and middleware based distributed systems.

