Distributed File Systems

Chapter 10

b)

Distributed File System

A distributed file system is a file system that
resides on different machines, but offers an
integrated view of data stored on remote disks.

Examples of distributed file systems
a) NFS
b) AFS
c) Coda
d) Plan9
e) xFS

Network File System (NFS)

Developed originally at Sun Microsystems for
UNIX workstations.

It 1s a model to integrate different file systems.

Based on the 1dea that each file server provides a
standardized view of its local file system.

NFS runs on heterogeneous groups of computers.

NFS Architecture (1)

e NFS uses a remote access model: clients are
unaware of file locations.

* Servers export a set of operations on files.

1. File moved to client
Client Server Client / Server
P EE— .
< fﬂf Old file
- » E ? Tﬂ» New file
Requests from \ /
clientto access File stays 2. Accesses are 3 When client is done
remote file on server done on client file is returned to
server

The remote access model. The upload/download model.

NFS Architecture (2)

Client

System call layer

\J

Virtual file system
(VFS) layer

v v

Server

Local file _
system interface NFS cllenf

System call layer

v

Virtual file system
(VFS) layer

Wiy

| Lokal file
NFSI server systerp interface

v |
RPC client
stub I

14 |
RPd server
?tub

Network

The basic NFS architecture for UNIX systems.

NFS Architecture (3)

* NFS 1s independent from local file system
organization.

* It integrates file systems used in UNIX, Linux,
Windows, and other operating systems.

* The model offered is similar to UNIX-like file
systems based on files as sequences of bytes.

File System Model

Operation v3 v4 Description
Create Yes No Create a regular file
Create No Yes Create a nonregular file
Link Yes Yes Create a hard link to a file
Symlink Yes No Create a symbolic link to a file
Mkdir Yes No Create a subdirectory in a given directory
Mknod Yes No Create a special file
Rename Yes Yes Change the name of a file
Rmdir Yes No Remove an empty subdirectory from a directory
Open No Yes Open afile
Close No Yes Close a file
Lookup Yes Yes Look up a file by means of a file name
Readdir Yes Yes Read the entries in a directory
Readlink Yes Yes Read the path name stored in a symbolic link
Getattr Yes Yes Read the attribute values for a file
Setattr Yes Yes Set one or more attribute values for a file
Read Yes Yes Read the data contained in a file
Write Yes Yes Write data to a file

An incomplete list of file system operations supported by NFS.

Communication (1)

In NFS all communications between servers and

clients are implemented using Remote Procedure
Call (RPC).

The used protocol 1s the Open Network Computing
RPC.

Before version 4, NFS used stateless servers.

The clients were 1n charge to maintain the status of
current operations on a remote file system.

Communication (2)

In version 4, NFS introduced compound
operations to improve the reduce the number of
RPC calls and improve communication
performance.

This 1s appropriate for wide-area file systems.

Compound operations are not handled as
transactions.

If one operation 1n a compound procedure fails
successive operations are not executed.

Client

Time

(a)
(b)

LOOKUP

Communication (3)

Server

-

' Lookup hame
*,

"“} Read file data
‘_/

(@)

Client

Time

Server

LOOKUP
OPEN
READ

-,

' Lookup name
} Open file

" Read file data
‘_/

(b)

Reading data from a file in NFS version 3.

Reading data using a compound procedure in version 4.

Communication (4)

In version 4, NFS servers maintain the status of
some operations.

This model was itroduced to handle with wide-
area network operations such as

— file locking
— cache consistency protocols
— callback procedures.

Naming (1)
File sharing 1s based on mounting operations.

Client A Server Client B

remote/[\‘bin users’;\ work /|j\bin
ﬁ\, - - f\, -
. Vi =

O O] |
i " f . A
i N i ‘ W U f kS
,.f'f N f" " I_,")
K mbox K mbox K mbox

f.' \{ I," y >‘f'f R
! b [e |
{OR®) T (U T U
| L | |
L J L)

Exported directory Exported directory
mounted by client mounted by client

Network

Mounting (part of) a remote file system in NFS.

Naming (2)

An NFS server can mount directories exported from
other servers, but these cannot be exported to clients.

Exported directory
contains imported

subdirectory

Client Server A Server B

bi packages
Client o
/” . ImpOFtS //,’ ‘_\\\ PR —
' draw ™ from / draw
: \ S
N Tt server A | / -t N Server A -
g .l g R N |mports i) N
/ / O ; \ | directory U b N
! | ¢) “ i s
! f K install | from / install
! / .. server B / i
/ lﬂ " !
L | L
[L

/!

Client needs to
explicitly import
subdirectory from
server B

Mounting nested directories from multiple servers in NFS.

Network

Automounting (1)

* When a file system should be mounted on a
client ?

* An automatic procedure 1s implemented by an
automounter for NFS that

— mount home directories of users when they log
into the client and

— mount other file system on demand (when files are
accessed).

Automounting (2)

Client machine

i%

1. Lookup "/homefalice"

‘ NFS client

Server machine

3. Mount request

M Automounter

2. Create subdir "alice"i

‘ Local file system interface

hom‘e/
[*Iice
)

.

4. Mount subdir "alice"
from server

R ———

A simple automounter for NFS.

Automounting (3)

* To avoid to call the automounter whenever a file 1s
read, directories can be mounted on a special sub-
directory and using a symbolic link to each mounted
directory.

home tmp_mnt

alice :: %home
u alice
L"ftmp_mnt!homefalice") S

/ x“‘xy[

Symbolic link

Using symbolic links with automounting.

File Attributes (1)

 NFS file attributes are divided between two

groups: 12 mandatory (supported by every
implementation) and 43 recommended
attributes.

Attribute Description
TYPE The type of the file (regular, directory, symbolic link)
SIZE The length of the file in bytes
CHANGE Lr;}daiﬁgteo(; for a client to see if and/or when the file has
FSID Server-unique identifier of the file's file system

Some general mandatory file attributes in NFS.

File Attributes (2)

Attribute Description
ACL an access control list associated with the file
FILEHANDLE The server-provided file handle of this file
FILEID A file-system unique identifier for this file
FS _LOCATIONS Locations in the network where this file system may be found
OWNER The character-string name of the file's owner
TIME_ACCESS Time when the file data were last accessed
TIME_MODIFY Time when the file data were last modified
TIME_CREATE Time when the file was created

Some general recommended file attributes.

Semantics of File Sharing (1)

* According to the UNIX semantics 1n a sequential
system that allows to share files
— aread after a write, returns the value just written

— after two successive writes a read operation returns the
value stored by the last write.

* In a distributed system, UNIX semantics can be
assured 1f there 1s only one file server and clients do
not cache files.

Semantics of File Sharing (2)

Client machine #1

In a distributed system with

° ‘a b
caching, obsolete values may be Proessl 1y N
returned. /
2. \Write "¢" 1. Read "ab"
File server
Original file
Oll a Single Single machine J
. a b
maChlne, when a Proces.s\A
A 3. Read gets "ab"

read follows a lalble

. Client machine #2
write, the value /

Process e
returned by the B \ E 2]t
rocess
read is the value \ B
. . 1. Write "¢" 2. Read gets "abc"
just written.
(a) (b)

Semantics of File Sharing (3)

* Although NFS in theory uses the remote access
model, most implementation use local caches, so
they in practice use the upload/download model.

* NSF implements the session semantics:

changes to an open file are initially visible only to
the process that modified the file . When the file is
closed all the changes are visible to other
processes (or machines).

* What happens when two processes caches and
modify a file?

Semantics of File Sharing (4)

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

Four ways of dealing with the shared files in a distributed system.

File Locking in NFS (1)

* NFS version 4 use a file locking method.

File Locking in NFS (1)

* NFS version 4 use a file locking method.

» Read locks are not mutually exclusive.

 Write lock 1s exclusive.

Operation Description
Lock Creates a lock for a range of bytes
Lockt Test whether a conflicting lock has been granted
Locku Remove a lock from a range of bytes
Renew Renew the leas on a specified lock

NFS version 4 operations related to file locking.

File Locking in NFS (2)

« NFS implements an implicit way to lock a file: share reservation

Current file denial state

NONE READ WRITE BOTH
Request READ Succeed Fail Succeed Fail
access WRITE Succeed Succeed Fail Fail
BOTH Succeed Fail Fail Fail

(a)

Requested file denial state

[
NONE READ WRITE BOTH
Current READ Succeed Fail Succeed Fail
access WRITE Succeed Succeed Fail Fail
state BOTH Succeed Fail Fail Fail

(b)

The result of an open operation on an already opened by another client with
share reservations in NFS.

(@) When the client requests shared access given the current denial state.
(b) When the client requests a denial state given the current file access state.

NFS Client Caching (1)

* NFS version 4 provides Client-side caching including
a Memory cache and a Disk cache.

 File data, attributes, handles, and directories can be
cached.

Memory O Client NFS server
cache application

Network

NFS Client Caching (2)

Caching of file data uses the session semantics:
modification of cached data must be flushed to the
server when a client closes the file.

Data can be retained 1n the cache, but if the file will be
re-opened they must be revalidated.

NFS uses open delegation to delegate some rights to a
client that opened a file.

The client can take some decisions without asking the
server. Some other decisions remain to the server.

NFS Client Caching (3)

* An NFS may need to recall a delegation when another

client on a different machine asks for access rights to a
file.

* The callback mechanism 1s used to recall file delegation.

1. Client asks for file

Client S
en ~ 2. Server delegates file cver

Local copy

3. Server recalls delegation

| Updated file

4. Client sends returns file

NFS Client Caching (4)

« Attribute values, file handles, and directories can be
cached, but modifications to those values must be sent
to the server.

* Cache entries are automatically invalidated after a
certain amount of time. This oblige clients to
revalidate them before to use them again.

* NFS v4 provides a support for file system replication
through a list of locations of a file system.

NFS Fault Tolerance

* As NFS v4 provides stateful servers (e.g., file locking,
open delegation), fault tolerance and recovery
mechanisms need to be designed to handle with RPC
failures.

* RPC may use TCP or UDP protocols.

« RPC may incurs in duplicate requests when an RPC
reply 1s lost; so the server can carry out the request
more than one time.

Duplicate-Request Cache

Each RPC request from a client carries a unique transaction
1d (XID) and 1t 1s cached by the server with the reply.

Client Server | | Client Server Client Server
XID = 1234 :: XID=1234 XID = 1234
K 1 \i_x .
XID = 1234 B 1] \ \
\ proce | lt
.' requeﬁt: ,' Il

eply | H XID = 1234
.. .
v i

Time : Time
|
v H

|
|
|
|
|
|
|
XID =1234 / reply is lost | / :
|
|
|
|
|
|
|
|

|
I|
I|
I|
I|
I|
|
‘/Ijl I ><‘{|r :I H‘I
/ _yCache | Cache { ¥a _yCache
I|
I|
I|
I|
I|
I|
I|

Three situations for handling retransmissions.

(@) The request is still in progress

(b) The reply has just been returned

(c) The reply has been some time ago, but was lost.

NFS Security

Security in NFS 1s mainly based on secure channels and
file access control.

Client

‘ Virtual file system layer

v

Access
control

h J

Local file
system interface

NFS client

A

v

RPC client ‘

stub

Server
‘ Virtual file system layer
A e + ,,,,,,,,,
7| Access
control

Local file

NFS server system interface

w |- RPC server
" stub %

The NFS security architecture.

Secure RPCs

Client machine Server machine
NFS client NFS server
| |
RPC client stub RPC server stub
i [[
I RPCSEC _GSS RPCSEC GSS
; | |
| Gss-API GSS-API
| | | | | |
0| | B >
Q e o e
3| ¥ L 3 ¥ |2
Network

Secure RPC in NFS version 4 1s based on RPCSRC GSS.

Access Control

Values of the ACL

attribute
i

\/ Operation Description
Read_data Permission to read the data contained in a file
Write_data Permission to to modify a file's data
Append_data Permission to to append data to a file
Execute Permission to to execute a file
List_directory Permission to to list the contents of a directory
Add_file Permission to to add a new file t50 a directory
Add_subdirectory Permission to to create a subdirectory to a directory
Delete Permission to to delete a file
Delete_child Permission to to delete a file or directory within a directory
Read_acl Permission to to read the ACL
Write_acl Permission to to write the ACL
Read_attributes The ability to read the other basic attributes of a file
Write_attributes Permission to to change the other basic attributes of a file
Read_named_attrs Permission to to read the named attributes of a file
Write_named_attrs Permission to to write the named attributes of a file
Write_owner Permission to to change the owner
Synchronize Permission to to access a file locally at the server with synchronous reads and writes

The classification of operations recognized by NFS with respect to access control.

The NFS User Types

Type of user

Description

Owner The owner of a file

Group The group of users associated with a file

Everyone Any user of a process

Interactive Any process accessing the file from an interactive terminal

Network Any process accessing the file via the network

Dialup Any process accessing the file through a dialup connection
to the server

Batch Any process accessing the file as part of a batch job

Anonymous Anyone accessing the file without authentication

Authenticated Any authenticated user of a process

Service Any system-defined service process

The various kinds of users and processes distinguished by

NFS with respect to access control.

Overview of Coda (1)

e (Coda is based on the Andrew File System (AFS).

* Goals: naming and location transparency and high
availability.

The overall organization of AFS.

Overview of Coda (2)

* In each Virtue client is running a Venus process
that plays the same role of an NFS client.

* Venus role 1s also to allows the client to
continue to work even 1f the file server access i1s
not possible.

« Communication 1s based on reliable RPC.

Overview of Coda (3)

Virtue client machine

User User Venus
process process process
l || | 1
A A I A i [
|

stu

' I

| I
RPC client

[I I

' 1

I

Iv vy |

Local file < . .
system interface< j Virtual file system Ialyg; -

% Local OS

)

Network

The internal organization of a Virtue workstation.

Overview of Coda (4)

Coda implements a UNIX-like file system with
similar operations of NFS.

Coda provides a global shared name space maintained
by Vice servers

Clients access the global name space through a special
subdirectory (/afs).

When accessed, a part of the shared name space 1s
mounted locally.

Naming 1n Coda (1)
Namining in Coda 1s similar to that of UNIX.

File are grouped in volumes - disk partitions that
correspond to file systems associated to a user and
stored 1n a Vice server.

Differently form NFS, in Coda shared file have the
same name.

Coda uses Logical volumes and Replicated Volume
Identifiers (RVI).

Naming 1in Coda (2)

Naming inherited from server's name space

Client A Server Client B

afs local f
/E\ bin pkg 2 .S{

A M I
O oo
BRI

1 i
! | [' | i f '
I I ! . ! ! |
I : \ I L | r" '
| -7 ~_ - i
T T o e I N e | v
I ! | |
| I _—__‘__,I |
I : :. i
I i
! ! i “
L"-\—__’—{ e -

Exported directory Exported directory
mounted by client mounted by client

Network

Clients 1n Coda have access to a single shared name space.

File Identifiers

File 1ds are composed of two parts: RVID + vnode

Volume

File server

replication DB | RVID | File handle
VIDA, |
VID2 I
*>| Server| File handle
' |
Server
~r
Server2
Volume |
location DB v
—>| Server| File handle

-

-

File server

-

-

The implementation and resolution of a Coda file identifier.

Transactional Semantics

Coda implements a form of weak transactional
semantics by interpreting a session as a transaction.

Different types of sessions are defined and different

system calls are associated to a session type.
File-associated data Read? Modified?
File identifier Yes No
Access rights Yes No
Last modification time Yes Yes
File length Yes Yes
File contents Yes Yes

The metadata read and modified for a store session type in Coda.

Server Replication

* Coda allows replicated file servers called Volume
Storage Group (VSG).

* For each client an Accessible VSG i1s provided and a
replicated-write protocol 1s used for consistency.

Server Server
Sy o S,

o —

'
A
Client Broken Client
A Seger hetwork B
2 —_—

—

Two clients with different AVSG for the same replicated file.

Access Control

* Access control lists are associated with directories not
with files.

Operation Description
Read Read any file in the directory
Write Modify any file in the directory
Lookup Look up the status of any file
Insert Add a new file to the directory
Delete Delete an existing file
Administer | Modify the ACL of the directory

Classification of file and directory operations recognized
by Coda with respect to access control.

Plan 9: Resources Unitied to Files

All resources are accessed using a file-like syntax on
a pool of servers.

Gateway File server CPU Server
NS3
NS NS2 o) 3O
Network & Process f b
interface P (——»] \D D D
To Internet
Client has
45 P mounted
Ni}> % NS1 and NS2
TT O NS1
NS3 NS2
Client Client

General organization of Plan 9

Communication

* For communications Plan 9 uses the 9P protocol and
network interfaces are represented as directories.

File Description
ctl Used to write protocol-specific control commands
data Used to read and write data
listen Used to accept incoming connection setup requests
local Provides information on the caller's side of the connection
remote | Provides information on the other side of the connection
status Provides diagnostic information on the current status of the connection

Files associated with a single TCP connection in Plan 9.

Naming

* A client can mount multiple name spaces at the same
mount point composing a union directory.

* The mounting order 1s maintained 1n file search.

FSa i fremote
fhome fusr /bin fsrc b fbinab m:‘usr

T

A union directory in Plan 9.

Overview of xFS.

* The xFS file system 1s based on a serverless model.

* The entire file system 1s distributed across machines
including clients.

* Each machine can run a storage server, a metadata
server and a client process.

Client Manager Client
Manager Storage Client Storage Storage Manager
server server server

A typical distribution of xFS processes across multiple machines.

Communication 1n xFS

« RPC was substituted with active messages in xFS.

* RPC performance was not the best and fully
decentralization 1s hard to manage with RPC.

* In an active message, when a message arrives, an
handler 1s automatically invoked for execution.

Overview of SFS

* The Secure File System uses keys for file system
security.

» Clients cannot access a file without having a secret key.

Client machine Server machine
User User ?gg’:i% r:]
program agent cerver
NFS SFS SFS NFS
client RPC client server RPC server

The organization of SFS.

Summary

caching

Issue NFS Coda Plan 9 xFS SFS
Design goals ﬁ:z:ﬁ;mncy High availability Uniformity Serverless system Scalable security
Access model Remote Up/Download Remote Log-based Remote
Communication RPC RPC Special Active msgs RPC
Client process Thin/Fat Fat Thin Fat Medium
Server groups No Yes No Yes No
Mount granularity Directory File system File system File system Directory
Name space Per client Global Per process Global Global
File ID scope File server Global Server Global File system
Sharing sem. Session Transactional UNIX UNIX N/S
Cache consist. write-back write-back write-through write-back write-back
Replication Minimal ROWA None Striping None
Fault tolerance Reliable comm. Replication and Reliable comm. Striping Reliable comm.

Checkpoint & write

Recovery Client-based Reintegration N/S logs N/S
Secure channels Existing Needham- Needham- No pathnames Self-cert.
mechanisms Schroeder Schroeder
A trol M ti Directory UNIX based UNIX based NFS BASED
ccess contro any operations . - ase ase

A comparison between NFS, Coda, Plan 9, xFS. N/S indicates that nothing has been specified.

	Distributed File Systems
	Distributed File System
	Network File System (NFS)
	NFS Architecture (1)
	NFS Architecture (2)
	NFS Architecture (3)
	File System Model
	Communication (1)
	Communication (2)
	Communication (3)
	Communication (4)
	Naming (1)
	Naming (2)
	Automounting (1)
	Automounting (2)
	Automounting (3)
	File Attributes (1)
	File Attributes (2)
	Semantics of File Sharing (1)
	Semantics of File Sharing (2)
	Semantics of File Sharing (3)
	Semantics of File Sharing (4)
	File Locking in NFS (1)
	File Locking in NFS (1)
	File Locking in NFS (2)
	NFS Client Caching (1)
	NFS Client Caching (2)
	NFS Client Caching (3)
	NFS Client Caching (4)
	NFS Fault Tolerance
	Duplicate-Request Cache
	NFS Security
	Secure RPCs
	Access Control
	The NFS User Types
	Overview of Coda (1)
	Overview of Coda (2)
	Overview of Coda (3)
	Overview of Coda (4)
	Naming in Coda (1)
	Naming in Coda (2)
	File Identifiers
	Transactional Semantics
	Server Replication
	Access Control
	Plan 9: Resources Unified to Files
	Communication
	Naming
	Overview of xFS.
	Communication in xFS
	Overview of SFS
	Summary

